Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anatomy-Constrained Contrastive Learning for Synthetic Segmentation without Ground-truth (2107.05482v1)

Published 12 Jul 2021 in cs.CV, cs.AI, and eess.IV

Abstract: A large amount of manual segmentation is typically required to train a robust segmentation network so that it can segment objects of interest in a new imaging modality. The manual efforts can be alleviated if the manual segmentation in one imaging modality (e.g., CT) can be utilized to train a segmentation network in another imaging modality (e.g., CBCT/MRI/PET). In this work, we developed an anatomy-constrained contrastive synthetic segmentation network (AccSeg-Net) to train a segmentation network for a target imaging modality without using its ground truth. Specifically, we proposed to use anatomy-constraint and patch contrastive learning to ensure the anatomy fidelity during the unsupervised adaptation, such that the segmentation network can be trained on the adapted image with correct anatomical structure/content. The training data for our AccSeg-Net consists of 1) imaging data paired with segmentation ground-truth in source modality, and 2) unpaired source and target modality imaging data. We demonstrated successful applications on CBCT, MRI, and PET imaging data, and showed superior segmentation performances as compared to previous methods.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.