Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UniSpeech at scale: An Empirical Study of Pre-training Method on Large-Scale Speech Recognition Dataset (2107.05233v1)

Published 12 Jul 2021 in eess.AS

Abstract: Recently, there has been a vast interest in self-supervised learning (SSL) where the model is pre-trained on large scale unlabeled data and then fine-tuned on a small labeled dataset. The common wisdom is that SSL helps resource-limited tasks in which only a limited amount of labeled data is available. The benefit of SSL keeps diminishing when the labeled training data amount increases. To our best knowledge, at most a few thousand hours of labeled data was used in the study of SSL. In contrast, the industry usually uses tens of thousands of hours of labeled data to build high-accuracy speech recognition (ASR) systems for resource-rich languages. In this study, we take the challenge to investigate whether and how SSL can improve the ASR accuracy of a state-of-the-art production-scale Transformer-Transducer model, which was built with 65 thousand hours of anonymized labeled EN-US data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.