Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

UniSpeech at scale: An Empirical Study of Pre-training Method on Large-Scale Speech Recognition Dataset (2107.05233v1)

Published 12 Jul 2021 in eess.AS

Abstract: Recently, there has been a vast interest in self-supervised learning (SSL) where the model is pre-trained on large scale unlabeled data and then fine-tuned on a small labeled dataset. The common wisdom is that SSL helps resource-limited tasks in which only a limited amount of labeled data is available. The benefit of SSL keeps diminishing when the labeled training data amount increases. To our best knowledge, at most a few thousand hours of labeled data was used in the study of SSL. In contrast, the industry usually uses tens of thousands of hours of labeled data to build high-accuracy speech recognition (ASR) systems for resource-rich languages. In this study, we take the challenge to investigate whether and how SSL can improve the ASR accuracy of a state-of-the-art production-scale Transformer-Transducer model, which was built with 65 thousand hours of anonymized labeled EN-US data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.