Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Spatial and Temporal Networks for Facial Expression Recognition in the Wild Videos (2107.05160v1)

Published 12 Jul 2021 in cs.CV and eess.IV

Abstract: The paper describes our proposed methodology for the seven basic expression classification track of Affective Behavior Analysis in-the-wild (ABAW) Competition 2021. In this task, facial expression recognition (FER) methods aim to classify the correct expression category from a diverse background, but there are several challenges. First, to adapt the model to in-the-wild scenarios, we use the knowledge from pre-trained large-scale face recognition data. Second, we propose an ensemble model with a convolution neural network (CNN), a CNN-recurrent neural network (CNN-RNN), and a CNN-Transformer (CNN-Transformer), to incorporate both spatial and temporal information. Our ensemble model achieved F1 as 0.4133, accuracy as 0.6216 and final metric as 0.4821 on the validation set.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.