Papers
Topics
Authors
Recent
2000 character limit reached

Training Over-parameterized Models with Non-decomposable Objectives (2107.04641v1)

Published 9 Jul 2021 in cs.LG and cs.AI

Abstract: Many modern machine learning applications come with complex and nuanced design goals such as minimizing the worst-case error, satisfying a given precision or recall target, or enforcing group-fairness constraints. Popular techniques for optimizing such non-decomposable objectives reduce the problem into a sequence of cost-sensitive learning tasks, each of which is then solved by re-weighting the training loss with example-specific costs. We point out that the standard approach of re-weighting the loss to incorporate label costs can produce unsatisfactory results when used to train over-parameterized models. As a remedy, we propose new cost-sensitive losses that extend the classical idea of logit adjustment to handle more general cost matrices. Our losses are calibrated, and can be further improved with distilled labels from a teacher model. Through experiments on benchmark image datasets, we showcase the effectiveness of our approach in training ResNet models with common robust and constrained optimization objectives.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.