Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Model compression as constrained optimization, with application to neural nets. Part V: combining compressions (2107.04380v1)

Published 9 Jul 2021 in cs.LG

Abstract: Model compression is generally performed by using quantization, low-rank approximation or pruning, for which various algorithms have been researched in recent years. One fundamental question is: what types of compression work better for a given model? Or even better: can we improve by combining compressions in a suitable way? We formulate this generally as a problem of optimizing the loss but where the weights are constrained to equal an additive combination of separately compressed parts; and we give an algorithm to learn the corresponding parts' parameters. Experimentally with deep neural nets, we observe that 1) we can find significantly better models in the error-compression space, indicating that different compression types have complementary benefits, and 2) the best type of combination depends exquisitely on the type of neural net. For example, we can compress ResNets and AlexNet using only 1 bit per weight without error degradation at the cost of adding a few floating point weights. However, VGG nets can be better compressed by combining low-rank with a few floating point weights.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube