Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Modeling of Bucket-Soil Interactions Using Koopman-DFL Lifting Linearization for Model Predictive Contouring Control of Autonomous Excavators (2107.04314v1)

Published 9 Jul 2021 in cs.RO

Abstract: A lifting-linearization method based on the Koopman operator and Dual Faceted Linearization is applied to the control of a robotic excavator. In excavation, a bucket interacts with the surrounding soil in a highly nonlinear and complex manner. Here, we propose to represent the nonlinear bucket-soil dynamics with a set of linear state equations in a higher-dimensional space. The space of independent state variables is augmented by adding variables associated with nonlinear elements involved in the bucket-soil dynamics. These include nonlinear resistive forces and moment acting on the bucket from the soil, and the effective inertia of the bucket that varies as the soil is captured into the bucket. Variables associated with these nonlinear resistive and inertia elements are treated as additional state variables, and their time evolution is represented as another set of linear differential equations. The lifted linear dynamic model is then applied to Model Predictive Contouring Control, where a cost functional is minimized as a convex optimization problem thanks to the linear dynamics in the lifted space. The lifted linear model is tuned based on a data-driven method by using a soil dynamics simulator. Simulation experiments verify the effectiveness of the proposed lifting linearization compared to its counterpart.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.