Papers
Topics
Authors
Recent
2000 character limit reached

Adaptable and conflict colouring multigraphs with no cycles of length three or four (2107.04253v1)

Published 9 Jul 2021 in math.CO and cs.DM

Abstract: The adaptable choosability of a multigraph $G$, denoted $\mathrm{ch}_a(G)$, is the smallest integer $k$ such that any edge labelling, $\tau$, of $G$ and any assignment of lists of size $k$ to the vertices of $G$ permits a list colouring, $\sigma$, of $G$ such that there is no edge $e = uv$ where $\tau(e) = \sigma(u) = \sigma(v)$. Here we show that for a multigraph $G$ with maximum degree $\Delta$ and no cycles of length 3 or 4, $\mathrm{ch}_a(G) \leq (2\sqrt{2}+o(1))\sqrt{\Delta/\ln\Delta}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of $G$, which is a closely related parameter defined by Dvo\v{r}\'ak, Esperet, Kang and Ozeki [arXiv:1803.10962].

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.