Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Trajectory Prediction with Structural Constraints (2107.04193v1)

Published 9 Jul 2021 in cs.RO and cs.LG

Abstract: This work addresses the problem of predicting the motion trajectories of dynamic objects in the environment. Recent advances in predicting motion patterns often rely on machine learning techniques to extrapolate motion patterns from observed trajectories, with no mechanism to directly incorporate known rules. We propose a novel framework, which combines probabilistic learning and constrained trajectory optimisation. The learning component of our framework provides a distribution over future motion trajectories conditioned on observed past coordinates. This distribution is then used as a prior to a constrained optimisation problem which enforces chance constraints on the trajectory distribution. This results in constraint-compliant trajectory distributions which closely resemble the prior. In particular, we focus our investigation on collision constraints, such that extrapolated future trajectory distributions conform to the environment structure. We empirically demonstrate on real-world and simulated datasets the ability of our framework to learn complex probabilistic motion trajectories for motion data, while directly enforcing constraints to improve generalisability, producing more robust and higher quality trajectory distributions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Weiming Zhi (28 papers)
  2. Lionel Ott (60 papers)
  3. Fabio Ramos (99 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.