Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

First-Generation Inference Accelerator Deployment at Facebook (2107.04140v3)

Published 8 Jul 2021 in cs.AR

Abstract: In this paper, we provide a deep dive into the deployment of inference accelerators at Facebook. Many of our ML workloads have unique characteristics, such as sparse memory accesses, large model sizes, as well as high compute, memory and network bandwidth requirements. We co-designed a high-performance, energy-efficient inference accelerator platform based on these requirements. We describe the inference accelerator platform ecosystem we developed and deployed at Facebook: both hardware, through Open Compute Platform (OCP), and software framework and tooling, through Pytorch/Caffe2/Glow. A characteristic of this ecosystem from the start is its openness to enable a variety of AI accelerators from different vendors. This platform, with six low-power accelerator cards alongside a single-socket host CPU, allows us to serve models of high complexity that cannot be easily or efficiently run on CPUs. We describe various performance optimizations, at both platform and accelerator level, which enables this platform to serve production traffic at Facebook. We also share deployment challenges, lessons learned during performance optimization, as well as provide guidance for future inference hardware co-design.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.