Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

SoS certification for symmetric quadratic functions and its connection to constrained Boolean hypercube optimization (2107.04100v1)

Published 8 Jul 2021 in cs.CC and cs.DS

Abstract: We study the rank of the Sum of Squares (SoS) hierarchy over the Boolean hypercube for Symmetric Quadratic Functions (SQFs) in $n$ variables with roots placed in points $k-1$ and $k$. Functions of this type have played a central role in deepening the understanding of the performance of the SoS method for various unconstrained Boolean hypercube optimization problems, including the Max Cut problem. Recently, Lee, Prakash, de Wolf, and Yuen proved a lower bound on the SoS rank for SQFs of $\Omega(\sqrt{k(n-k)})$ and conjectured the lower bound of $\Omega(n)$ by similarity to a polynomial representation of the $n$-bit OR function. Using Chebyshev polynomials, we refute the Lee -- Prakash -- de~Wolf -- Yuen conjecture and prove that the SoS rank for SQFs is at most $O(\sqrt{nk}\log(n))$. We connect this result to two constrained Boolean hypercube optimization problems. First, we provide a degree $O( \sqrt{n})$ SoS certificate that matches the known SoS rank lower bound for an instance of Min Knapsack, a problem that was intensively studied in the literature. Second, we study an instance of the Set Cover problem for which Bienstock and Zuckerberg conjectured an SoS rank lower bound of $n/4$. We refute the Bienstock -- Zuckerberg conjecture and provide a degree $O(\sqrt{n}\log(n))$ SoS certificate for this problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.