Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Choiceless Polynomial Time, Symmetric Circuits and Cai-Fürer-Immerman Graphs (2107.03778v2)

Published 8 Jul 2021 in cs.LO and cs.CC

Abstract: Choiceless Polynomial Time (CPT) is currently the only candidate logic for capturing PTIME (that is, it is contained in PTIME and has not been separated from it). A prominent example of a decision problem in PTIME that is not known to be CPT-definable is the isomorphism problem on unordered Cai-F\"urer-Immerman graphs (the CFI-query). We study the expressive power of CPT with respect to this problem and develop a partial characterisation of solvable instances in terms of properties of symmetric XOR-circuits over the CFI-graphs: The CFI-query is CPT-definable on a given class of graphs only if: For each graph $G$, there exists an XOR-circuit $C$, whose input gates are labelled with edges of $G$, such that $C$ is sufficiently symmetric with respect to the automorphisms of $G$ and satisfies certain other circuit properties. We also give a sufficient condition for CFI being solvable in CPT and develop a new CPT-algorithm for the CFI-query. It takes as input structures which contain, along with the CFI-graph, an XOR-circuit with suitable properties. The strongest known CPT-algorithm for this problem can solve instances equipped with a preorder with colour classes of logarithmic size. Our result implicitly extends this to preorders with colour classes of polylogarithmic size (plus some unordered additional structure). Finally, our work provides new insights regarding a much more general problem: The existence of a solution to an unordered linear equation system $A \cdot x = b$ over a finite field is CPT-definable if the matrix $A$ has at most logarithmic rank (with respect to the size of the structure that encodes the equation system). This is another example that separates CPT from fixed-point logic with counting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)