Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploring the effect of social media and spatial characteristics during the COVID-19 pandemic in China (2107.03766v1)

Published 8 Jul 2021 in physics.soc-ph and cs.SI

Abstract: The declaration of COVID-19 as a pandemic has largely amplified the spread of related information on social media, such as Twitter, Facebook, and WeChat.Unlike the previous studies which focused on how to detect the misinformation or fake news related toCOVID-19, we investigate how the disease and information co-evolve in the population. We focus onCOVID-19and its information during the period when the disease was widely spread in China, i.e., from January 25th to March 24th, 2020. We first explore how the disease and information co-evolve via the spatial analysis of the two spreading processes. We visualize the geo-location of both disease and information at the province level and find that disease is more geo-localized compared to information. We find a high correlation between the disease and information data, and also people care about the spread only when it comes to their neighborhood. Regard to the content of the information, we find that positive messages are more negatively correlated with the disease compared to negative and neutral messages. Additionally, we introduce machine learning algorithms, i.e., linear regression and random forest, to further predict the number of infected using different disease spatial related and information-related characteristics. We obtain that the disease spatial related characteristics of nearby cities can help to improve the prediction accuracy. Meanwhile, information-related characteristics can also help to improve the prediction performance, but with a delay, i.e., the improvement comes from using, for instance, the number of messages 10 days ago, for disease prediction. The methodology proposed in this paper may shed light on new clues of emerging infections

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.