Papers
Topics
Authors
Recent
2000 character limit reached

A Comparison of Data-Driven Techniques for Power Grid Parameter Estimation (2107.03762v1)

Published 8 Jul 2021 in eess.SY and cs.SY

Abstract: Power grid parameter estimation involves the estimation of unknown parameters, such as inertia and damping coefficients, using observed dynamics. In this work, we present a comparison of data-driven algorithms for the power grid parameter estimation problem. First, we propose a new algorithm to solve the parameter estimation problem based on the Sparse Identification of Nonlinear Dynamics (SINDy) approach, which uses linear regression to infer the parameters that best describe the observed data. We then compare its performance against two benchmark algorithms, namely, the unscented Kalman filter (UKF) approach and the physics-informed neural networks (PINN) approach. We perform extensive simulations on IEEE bus systems to examine the performance of the aforementioned algorithms. Our results show that the SINDy algorithm outperforms the PINN and UKF algorithms in being able to accurately estimate the power grid parameters over a wide range of system parameters (including high and low inertia systems). Moreover, it is extremely efficient computationally and so takes significantly less time than the PINN algorithm, thus making it suitable for real-time parameter estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.