Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Network and Sequence-Based Prediction of Protein-Protein Interactions (2107.03694v4)

Published 8 Jul 2021 in q-bio.BM and cs.OH

Abstract: Background:Typically, proteins perform key biological functions by interacting with each other. As a consequence, predicting which protein pairs interact is a fundamental problem. Experimental methods are slow, expensive, and may be error prone.Many computational methods have been proposed to identify candidate interacting pairs. When accurate, they can serve as an inexpensive, preliminary filtering stage, to be followed by downstream experimental validation. Among such methods, sequence-based ones are very promising.Results:We present, a new algorithm that leverages both topological and biological information to predict protein-protein interactions. We comprehensively compare our Framework with state-of-the-art approaches on reliable PPIs datasets, showing that they have competitive or higher accuracy on biologically validated test sets.Conclusion:We shown that topological plus sequence-based computational methods can effectively predict the entire human interactome compared with methods that leverage only one source of biological information.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.