Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Space-Efficient Fault-Tolerant Diameter Oracles (2107.03485v1)

Published 7 Jul 2021 in cs.DS

Abstract: We design $f$-edge fault-tolerant diameter oracles ($f$-FDOs). We preprocess a given graph $G$ on $n$ vertices and $m$ edges, and a positive integer $f$, to construct a data structure that, when queried with a set $F$ of $|F| \leq f$ edges, returns the diameter of $G-F$. For a single failure ($f=1$) in an unweighted directed graph of diameter $D$, there exists an approximate FDO by Henzinger et al. [ITCS 2017] with stretch $(1+\varepsilon)$, constant query time, space $O(m)$, and a combinatorial preprocessing time of $\widetilde{O}(mn + n{1.5} \sqrt{Dm/\varepsilon})$.We present an FDO for directed graphs with the same stretch, query time, and space. It has a preprocessing time of $\widetilde{O}(mn + n2/\varepsilon)$. The preprocessing time nearly matches a conditional lower bound for combinatorial algorithms, also by Henzinger et al. With fast matrix multiplication, we achieve a preprocessing time of $\widetilde{O}(n{2.5794} + n2/\varepsilon)$. We further prove an information-theoretic lower bound showing that any FDO with stretch better than $3/2$ requires $\Omega(m)$ bits of space. For multiple failures ($f>1$) in undirected graphs with non-negative edge weights, we give an $f$-FDO with stretch $(f+2)$, query time $O(f2\log2{n})$, $\widetilde{O}(fn)$ space, and preprocessing time $\widetilde{O}(fm)$. We complement this with a lower bound excluding any finite stretch in $o(fn)$ space. We show that for unweighted graphs with polylogarithmic diameter and up to $f = o(\log n/ \log\log n)$ failures, one can swap approximation for query time and space. We present an exact combinatorial $f$-FDO with preprocessing time $mn{1+o(1)}$, query time $n{o(1)}$, and space $n{2+o(1)}$. When using fast matrix multiplication instead, the preprocessing time can be improved to $n{\omega+o(1)}$, where $\omega < 2.373$ is the matrix multiplication exponent.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.