Space-Efficient Fault-Tolerant Diameter Oracles (2107.03485v1)
Abstract: We design $f$-edge fault-tolerant diameter oracles ($f$-FDOs). We preprocess a given graph $G$ on $n$ vertices and $m$ edges, and a positive integer $f$, to construct a data structure that, when queried with a set $F$ of $|F| \leq f$ edges, returns the diameter of $G-F$. For a single failure ($f=1$) in an unweighted directed graph of diameter $D$, there exists an approximate FDO by Henzinger et al. [ITCS 2017] with stretch $(1+\varepsilon)$, constant query time, space $O(m)$, and a combinatorial preprocessing time of $\widetilde{O}(mn + n{1.5} \sqrt{Dm/\varepsilon})$.We present an FDO for directed graphs with the same stretch, query time, and space. It has a preprocessing time of $\widetilde{O}(mn + n2/\varepsilon)$. The preprocessing time nearly matches a conditional lower bound for combinatorial algorithms, also by Henzinger et al. With fast matrix multiplication, we achieve a preprocessing time of $\widetilde{O}(n{2.5794} + n2/\varepsilon)$. We further prove an information-theoretic lower bound showing that any FDO with stretch better than $3/2$ requires $\Omega(m)$ bits of space. For multiple failures ($f>1$) in undirected graphs with non-negative edge weights, we give an $f$-FDO with stretch $(f+2)$, query time $O(f2\log2{n})$, $\widetilde{O}(fn)$ space, and preprocessing time $\widetilde{O}(fm)$. We complement this with a lower bound excluding any finite stretch in $o(fn)$ space. We show that for unweighted graphs with polylogarithmic diameter and up to $f = o(\log n/ \log\log n)$ failures, one can swap approximation for query time and space. We present an exact combinatorial $f$-FDO with preprocessing time $mn{1+o(1)}$, query time $n{o(1)}$, and space $n{2+o(1)}$. When using fast matrix multiplication instead, the preprocessing time can be improved to $n{\omega+o(1)}$, where $\omega < 2.373$ is the matrix multiplication exponent.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.