Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Samplets: A new paradigm for data compression (2107.03337v3)

Published 7 Jul 2021 in math.NA, cs.CV, cs.LG, and cs.NA

Abstract: In this article, we introduce the concept of samplets by transferring the construction of Tausch-White wavelets to the realm of data. This way we obtain a multilevel representation of discrete data which directly enables data compression, detection of singularities and adaptivity. Applying samplets to represent kernel matrices, as they arise in kernel based learning or Gaussian process regression, we end up with quasi-sparse matrices. By thresholding small entries, these matrices are compressible to O(N log N) relevant entries, where N is the number of data points. This feature allows for the use of fill-in reducing reorderings to obtain a sparse factorization of the compressed matrices. Besides the comprehensive introduction to samplets and their properties, we present extensive numerical studies to benchmark the approach. Our results demonstrate that samplets mark a considerable step in the direction of making large data sets accessible for analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube