Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Surface Heat Flux on Complex Systems via Conv-LSTM (2107.02763v1)

Published 29 Jun 2021 in cs.CE

Abstract: Existing algorithms with iterations as the principle for 3D inverse heat conduction problems (IHCPs) are usually time-consuming. With the recent advancements in deep learning techniques, it is possible to apply the neural network to compute IHCPs. In this paper, a new framework based on Convolutional-LSTM is introduced to predict the transient heat flux via measured temperature. The inverse heat conduction models concerned in this work have 3D complex structures with non-linear boundary conditions and thermophysical parameters. In order to reach high precision, a forward solver based on the finite element method is utilized to generate sufficient data for training. The fully trained framework can provide accurate predictions efficiently once the measured temperature and models are acquired. It is believed that the proposed framework offers a new pattern for real-time heat flux inversion.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.