Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Self-training with noisy student model and semi-supervised loss function for dcase 2021 challenge task 4 (2107.02569v1)

Published 6 Jul 2021 in cs.SD, cs.LG, and eess.AS

Abstract: This report proposes a polyphonic sound event detection (SED) method for the DCASE 2021 Challenge Task 4. The proposed SED model consists of two stages: a mean-teacher model for providing target labels regarding weakly labeled or unlabeled data and a self-training-based noisy student model for predicting strong labels for sound events. The mean-teacher model, which is based on the residual convolutional recurrent neural network (RCRNN) for the teacher and student model, is first trained using all the training data from a weakly labeled dataset, an unlabeled dataset, and a strongly labeled synthetic dataset. Then, the trained mean-teacher model predicts the strong label to each of the weakly labeled and unlabeled datasets, which is brought to the noisy student model in the second stage of the proposed SED model. Here, the structure of the noisy student model is identical to the RCRNN-based student model of the mean-teacher model in the first stage. Then, it is self-trained by adding feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the DCASE 2021 Challenge Task 4, and then, several ensemble models that combine five-fold validation models with different hyperparameters of the semi-supervised loss function are finally selected as our final models.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.