Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Metric-Distortion Bounds under Limited Information (2107.02489v1)

Published 6 Jul 2021 in cs.GT

Abstract: In this work we study the metric distortion problem in voting theory under a limited amount of ordinal information. Our primary contribution is threefold. First, we consider mechanisms which perform a sequence of pairwise comparisons between candidates. We show that a widely-popular deterministic mechanism employed in most knockout phases yields distortion $\mathcal{O}(\log m)$ while eliciting only $m-1$ out of $\Theta(m2)$ possible pairwise comparisons, where $m$ represents the number of candidates. Our analysis for this mechanism leverages a powerful technical lemma recently developed by Kempe \cite{DBLP:conf/aaai/000120a}. We also provide a matching lower bound on its distortion. In contrast, we prove that any mechanism which performs fewer than $m-1$ pairwise comparisons is destined to have unbounded distortion. Moreover, we study the power of deterministic mechanisms under incomplete rankings. Most notably, when every agent provides her $k$-top preferences we show an upper bound of $6 m/k + 1$ on the distortion, for any $k \in {1, 2, \dots, m}$. Thus, we substantially improve over the previous bound of $12 m/k$ recently established by Kempe \cite{DBLP:conf/aaai/000120a,DBLP:conf/aaai/000120b}, and we come closer to matching the best-known lower bound. Finally, we are concerned with the sample complexity required to ensure near-optimal distortion with high probability. Our main contribution is to show that a random sample of $\Theta(m/\epsilon2)$ voters suffices to guarantee distortion $3 + \epsilon$ with high probability, for any sufficiently small $\epsilon > 0$. This result is based on analyzing the sensitivity of the deterministic mechanism introduced by Gkatzelis, Halpern, and Shah \cite{DBLP:conf/focs/Gkatzelis0020}. Importantly, all of our sample-complexity bounds are distribution-independent.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.