Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons (2107.02397v7)

Published 6 Jul 2021 in cs.LG and stat.ML

Abstract: This paper develops simple feed-forward neural networks that achieve the universal approximation property for all continuous functions with a fixed finite number of neurons. These neural networks are simple because they are designed with a simple, computable, and continuous activation function $\sigma$ leveraging a triangular-wave function and the softsign function. We first prove that $\sigma$-activated networks with width $36d(2d+1)$ and depth $11$ can approximate any continuous function on a $d$-dimensional hypercube within an arbitrarily small error. Hence, for supervised learning and its related regression problems, the hypothesis space generated by these networks with a size not smaller than $36d(2d+1)\times 11$ is dense in the continuous function space $C([a,b]d)$ and therefore dense in the Lebesgue spaces $Lp([a,b]d)$ for $p\in [1,\infty)$. Furthermore, we show that classification functions arising from image and signal classification are in the hypothesis space generated by $\sigma$-activated networks with width $36d(2d+1)$ and depth $12$ when there exist pairwise disjoint bounded closed subsets of $\mathbb{R}d$ such that the samples of the same class are located in the same subset. Finally, we use numerical experimentation to show that replacing the rectified linear unit (ReLU) activation function by ours would improve the experiment results.

Citations (29)

Summary

We haven't generated a summary for this paper yet.