Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Memory-Sample Lower Bounds for Learning Parity with Noise (2107.02320v1)

Published 5 Jul 2021 in cs.LG and cs.CC

Abstract: In this work, we show, for the well-studied problem of learning parity under noise, where a learner tries to learn $x=(x_1,\ldots,x_n) \in {0,1}n$ from a stream of random linear equations over $\mathrm{F}_2$ that are correct with probability $\frac{1}{2}+\varepsilon$ and flipped with probability $\frac{1}{2}-\varepsilon$, that any learning algorithm requires either a memory of size $\Omega(n2/\varepsilon)$ or an exponential number of samples. In fact, we study memory-sample lower bounds for a large class of learning problems, as characterized by [GRT'18], when the samples are noisy. A matrix $M: A \times X \rightarrow {-1,1}$ corresponds to the following learning problem with error parameter $\varepsilon$: an unknown element $x \in X$ is chosen uniformly at random. A learner tries to learn $x$ from a stream of samples, $(a_1, b_1), (a_2, b_2) \ldots$, where for every $i$, $a_i \in A$ is chosen uniformly at random and $b_i = M(a_i,x)$ with probability $1/2+\varepsilon$ and $b_i = -M(a_i,x)$ with probability $1/2-\varepsilon$ ($0<\varepsilon< \frac{1}{2}$). Assume that $k,\ell, r$ are such that any submatrix of $M$ of at least $2{-k} \cdot |A|$ rows and at least $2{-\ell} \cdot |X|$ columns, has a bias of at most $2{-r}$. We show that any learning algorithm for the learning problem corresponding to $M$, with error, requires either a memory of size at least $\Omega\left(\frac{k \cdot \ell}{\varepsilon} \right)$, or at least $2{\Omega(r)}$ samples. In particular, this shows that for a large class of learning problems, same as those in [GRT'18], any learning algorithm requires either a memory of size at least $\Omega\left(\frac{(\log |X|) \cdot (\log |A|)}{\varepsilon}\right)$ or an exponential number of noisy samples. Our proof is based on adapting the arguments in [Raz'17,GRT'18] to the noisy case.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.