Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap (2107.01990v4)

Published 5 Jul 2021 in math.NA, cs.NA, and math.FA

Abstract: We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of $h$-dimensional dominant subspaces and low-rank approximations of matrices $ A\in\mathbb K{m\times n}$ (where $\mathbb K=\mathbb R$ or $\mathbb C)$ in the case that there is no singular gap at the index $h$ i.e., if $\sigma_h=\sigma_{h+1}$ (where $\sigma_1\geq \ldots\geq \sigma_p\geq 0$ denote the singular values of $ A$, and $p=\min{m,n}$). Indeed, starting with a (deterministic) matrix $ X\in\mathbb K{n\times r}$ with $r\geq h$ satisfying a compatibility assumption with some $h$-dimensional right dominant subspace of $A$, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index $h$ (which is zero in this case) we exploit the nearest existing singular gaps.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.