Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Last-Iterate Convergence Rate of Optimistic Mirror Descent in Stochastic Variational Inequalities (2107.01906v1)

Published 5 Jul 2021 in math.OC and cs.LG

Abstract: In this paper, we analyze the local convergence rate of optimistic mirror descent methods in stochastic variational inequalities, a class of optimization problems with important applications to learning theory and machine learning. Our analysis reveals an intricate relation between the algorithm's rate of convergence and the local geometry induced by the method's underlying Bregman function. We quantify this relation by means of the Legendre exponent, a notion that we introduce to measure the growth rate of the Bregman divergence relative to the ambient norm near a solution. We show that this exponent determines both the optimal step-size policy of the algorithm and the optimal rates attained, explaining in this way the differences observed for some popular Bregman functions (Euclidean projection, negative entropy, fractional power, etc.).

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.