Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks (2107.01809v2)
Abstract: Transfer-based adversarial attacks can evaluate model robustness in the black-box setting. Several methods have demonstrated impressive untargeted transferability, however, it is still challenging to efficiently produce targeted transferability. To this end, we develop a simple yet effective framework to craft targeted transfer-based adversarial examples, applying a hierarchical generative network. In particular, we contribute to amortized designs that well adapt to multi-class targeted attacks. Extensive experiments on ImageNet show that our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods -- it reaches an average success rate of 29.1\% against six diverse models based only on one substitute white-box model, which significantly outperforms the state-of-the-art gradient-based attack methods. Moreover, the proposed method is also more efficient beyond an order of magnitude than gradient-based methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.