Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evaluating the Cybersecurity Risk of Real World, Machine Learning Production Systems (2107.01806v2)

Published 5 Jul 2021 in cs.CR and cs.LG

Abstract: Although cyberattacks on ML production systems can be harmful, today, security practitioners are ill equipped, lacking methodologies and tactical tools that would allow them to analyze the security risks of their ML-based systems. In this paper, we performed a comprehensive threat analysis of ML production systems. In this analysis, we follow the ontology presented by NIST for evaluating enterprise network security risk and apply it to ML-based production systems. Specifically, we (1) enumerate the assets of a typical ML production system, (2) describe the threat model (i.e., potential adversaries, their capabilities, and their main goal), (3) identify the various threats to ML systems, and (4) review a large number of attacks, demonstrated in previous studies, which can realize these threats. In addition, to quantify the risk of adversarial machine learning (AML) threat, we introduce a novel scoring system, which assign a severity score to different AML attacks. The proposed scoring system utilizes the analytic hierarchy process (AHP) for ranking, with the assistance of security experts, various attributes of the attacks. Finally, we developed an extension to the MulVAL attack graph generation and analysis framework to incorporate cyberattacks on ML production systems. Using the extension, security practitioners can apply attack graph analysis methods in environments that include ML components; thus, providing security practitioners with a methodological and practical tool for evaluating the impact and quantifying the risk of a cyberattack targeting an ML production system.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube