Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic programming by polymorphic semiring algebraic shortcut fusion (2107.01752v5)

Published 5 Jul 2021 in cs.DS, cs.LG, and math.RA

Abstract: Dynamic programming (DP) is an algorithmic design paradigm for the efficient, exact solution of otherwise intractable, combinatorial problems. However, DP algorithm design is often presented in an ad-hoc manner. It is sometimes difficult to justify algorithm correctness. To address this issue, this paper presents a rigorous algebraic formalism for systematically deriving DP algorithms, based on semiring polymorphism. We start with a specification, construct an algorithm to compute the required solution which is self-evidently correct because it exhaustively generates and evaluates all possible solutions meeting the specification. We then derive, through the use of shortcut fusion, an implementation of this algorithm which is both efficient and correct. We also demonstrate how, with the use of semiring lifting, the specification can be augmented with combinatorial constraints, showing how these constraints can be fused with the algorithm. We furthermore demonstrate how existing DP algorithms for a given combinatorial problem can be abstracted from their original context and re-purposed. This approach can be applied to the full scope of combinatorial problems expressible in terms of semirings. This includes, for example: optimal probability and Viterbi decoding, probabilistic marginalization, logical inference, fuzzy sets, differentiable softmax, relational and provenance queries. The approach, building on ideas from the existing literature on constructive algorithmics, exploits generic properties of polymorphic functions, tupling and formal sums and algebraic simplifications arising from constraint algebras. We demonstrate the effectiveness of this formalism for some example applications arising in signal processing, bioinformatics and reliability engineering. Python software implementing these algorithms can be downloaded from: http://www.maxlittle.net/software/dppolyalg.zip.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.