Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Randomized Neural Networks for Forecasting Time Series with Multiple Seasonality (2107.01705v1)

Published 4 Jul 2021 in cs.LG and cs.NE

Abstract: This work contributes to the development of neural forecasting models with novel randomization-based learning methods. These methods improve the fitting abilities of the neural model, in comparison to the standard method, by generating network parameters in accordance with the data and target function features. A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality. In the simulation study, we evaluate the performance of the proposed models and find that they can compete in terms of forecasting accuracy with fully-trained networks. Extremely fast and easy training, simple architecture, ease of implementation, high accuracy as well as dealing with nonstationarity and multiple seasonality in time series make the proposed model very attractive for a wide range of complex time series forecasting problems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)