Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unified Autoregressive Modeling for Joint End-to-End Multi-Talker Overlapped Speech Recognition and Speaker Attribute Estimation (2107.01549v1)

Published 4 Jul 2021 in cs.CL, cs.SD, and eess.AS

Abstract: In this paper, we present a novel modeling method for single-channel multi-talker overlapped automatic speech recognition (ASR) systems. Fully neural network based end-to-end models have dramatically improved the performance of multi-taker overlapped ASR tasks. One promising approach for end-to-end modeling is autoregressive modeling with serialized output training in which transcriptions of multiple speakers are recursively generated one after another. This enables us to naturally capture relationships between speakers. However, the conventional modeling method cannot explicitly take into account the speaker attributes of individual utterances such as gender and age information. In fact, the performance deteriorates when each speaker is the same gender or is close in age. To address this problem, we propose unified autoregressive modeling for joint end-to-end multi-talker overlapped ASR and speaker attribute estimation. Our key idea is to handle gender and age estimation tasks within the unified autoregressive modeling. In the proposed method, transformer-based autoregressive model recursively generates not only textual tokens but also attribute tokens of each speaker. This enables us to effectively utilize speaker attributes for improving multi-talker overlapped ASR. Experiments on Japanese multi-talker overlapped ASR tasks demonstrate the effectiveness of the proposed method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.