Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Data-Driven Method for Recognizing Automated Negotiation Strategies (2107.01496v2)

Published 3 Jul 2021 in cs.AI and cs.MA

Abstract: Understanding an opponent agent helps in negotiating with it. Existing works on understanding opponents focus on preference modeling (or estimating the opponent's utility function). An important but largely unexplored direction is recognizing an opponent's negotiation strategy, which captures the opponent's tactics, e.g., to be tough at the beginning but to concede toward the deadline. Recognizing complex, state-of-the-art, negotiation strategies is extremely challenging, and simple heuristics may not be adequate for this purpose. We propose a novel data-driven approach for recognizing an opponent's s negotiation strategy. Our approach includes a data generation method for an agent to generate domain-independent sequences by negotiating with a variety of opponents across domains, a feature engineering method for representing negotiation data as time series with time-step features and overall features, and a hybrid (recurrent neural network-based) deep learning method for recognizing an opponent's strategy from the time series of bids. We perform extensive experiments, spanning four problem scenarios, to demonstrate the effectiveness of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.