Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Examining average and discounted reward optimality criteria in reinforcement learning (2107.01348v2)

Published 3 Jul 2021 in cs.LG, cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: In reinforcement learning (RL), the goal is to obtain an optimal policy, for which the optimality criterion is fundamentally important. Two major optimality criteria are average and discounted rewards. While the latter is more popular, it is problematic to apply in environments without an inherent notion of discounting. This motivates us to revisit a) the progression of optimality criteria in dynamic programming, b) justification for and complication of an artificial discount factor, and c) benefits of directly maximizing the average reward criterion, which is discounting-free. Our contributions include a thorough examination of the relationship between average and discounted rewards, as well as a discussion of their pros and cons in RL. We emphasize that average-reward RL methods possess the ingredient and mechanism for applying a family of discounting-free optimality criteria (Veinott, 1969) to RL.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com