Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Short-term probabilistic photovoltaic power forecast based on deep convolutional long short-term memory network and kernel density estimation (2107.01343v1)

Published 3 Jul 2021 in cs.LG and eess.SP

Abstract: Solar energy is a clean and renewable energy. Photovoltaic (PV) power is an important way to utilize solar energy. Accurate PV power forecast is crucial to the large-scale application of PV power and the stability of electricity grid. This paper proposes a novel method for short-term photovoltaic power forecast using deep convolutional long short-term memory (ConvLSTM) network and kernel density estimation (KDE). In the proposed method, ConvLSTM is used to forecast the future photovoltaic power and KDE is used for estimating the joint probabilistic density function and giving the probabilistic confidence interval. Experiments in an actual photovoltaic power station verify the effectiveness of the proposed method. Comparison experiments with convolutional neural network (CNN) and long short-term memory network (LSTM)shows that ConvLSTM can combine the advantages of both CNN and LSTM and significantly outperform CNN and LSTM in terms of forecast accuracy. Through further comparison with other five conventional methods including multilayer perceptron (MLP), support vector regression (SVR), extreme learning machine (ELM), classification and regression tree (CART) and gradient boosting decision tree (GBDT), ConvLSTM can significantly improve the forecast accuracy by more than 20% for most of the five methods and the superiorities of ConvLSTM are further verified.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube