Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Decision Rules for Binary Classification (2107.01325v1)

Published 3 Jul 2021 in cs.LG, cs.AI, and cs.CY

Abstract: In recent years, machine learning has begun automating decision making in fields as varied as college admissions, credit lending, and criminal sentencing. The socially sensitive nature of some of these applications together with increasing regulatory constraints has necessitated the need for algorithms that are both fair and interpretable. In this paper we consider the problem of building Boolean rule sets in disjunctive normal form (DNF), an interpretable model for binary classification, subject to fairness constraints. We formulate the problem as an integer program that maximizes classification accuracy with explicit constraints on two different measures of classification parity: equality of opportunity and equalized odds. Column generation framework, with a novel formulation, is used to efficiently search over exponentially many possible rules. When combined with faster heuristics, our method can deal with large data-sets. Compared to other fair and interpretable classifiers, our method is able to find rule sets that meet stricter notions of fairness with a modest trade-off in accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Connor Lawless (11 papers)
  2. Oktay Gunluk (31 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.