Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Guided Deep Learning for Dynamical Systems: A Survey (2107.01272v6)

Published 2 Jul 2021 in cs.LG

Abstract: Modeling complex physical dynamics is a fundamental task in science and engineering. Traditional physics-based models are sample efficient, and interpretable but often rely on rigid assumptions. Furthermore, direct numerical approximation is usually computationally intensive, requiring significant computational resources and expertise, and many real-world systems do not have fully-known governing laws. While deep learning (DL) provides novel alternatives for efficiently recognizing complex patterns and emulating nonlinear dynamics, its predictions do not necessarily obey the governing laws of physical systems, nor do they generalize well across different systems. Thus, the study of physics-guided DL emerged and has gained great progress. Physics-guided DL aims to take the best from both physics-based modeling and state-of-the-art DL models to better solve scientific problems. In this paper, we provide a structured overview of existing methodologies of integrating prior physical knowledge or physics-based modeling into DL, with a special emphasis on learning dynamical systems. We also discuss the fundamental challenges and emerging opportunities in the area.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com