Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Deep Learning Based Discontinuous Galerkin Method for Hyperbolic Equations with Discontinuous Solutions and Random Uncertainties (2107.01127v1)

Published 2 Jul 2021 in math.NA and cs.NA

Abstract: We propose a deep learning based discontinuous Galerkin method (D2GM) to solve hyperbolic equations with discontinuous solutions and random uncertainties. The main computational challenges for such problems include discontinuities of the solutions and the curse of dimensionality due to uncertainties. Deep learning techniques have been favored for high-dimensional problems but face difficulties when the solution is not smooth, thus have so far been mainly used for viscous hyperbolic system that admits only smooth solutions. We alleviate this difficulty by setting up the loss function using discrete shock capturing schemes--the discontinous Galerkin method as an example--since the solutions are smooth in the discrete space. The convergence of D2GM is established via the Lax equivalence theorem kind of argument. The high-dimensional random space is handled by the Monte-Carlo method. Such a setup makes the D2GM approximate high-dimensional functions over the random space with satisfactory accuracy at reasonable cost. The D2GM is found numerically to be first-order and second-order accurate for (stochastic) linear conservation law with smooth solutions using piecewise constant and piecewise linear basis functions, respectively. Numerous examples are given to verify the efficiency and the robustness of D2GM with the dimensionality of random variables up to $200$ for (stochastic) linear conservation law and (stochastic) Burgers' equation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.