Papers
Topics
Authors
Recent
2000 character limit reached

A Primer on Pretrained Multilingual Language Models (2107.00676v2)

Published 1 Jul 2021 in cs.CL

Abstract: Multilingual LLMs (\MLLMs) such as mBERT, XLM, XLM-R, \textit{etc.} have emerged as a viable option for bringing the power of pretraining to a large number of languages. Given their success in zero-shot transfer learning, there has emerged a large body of work in (i) building bigger \MLLMs~covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating \MLLMs~ (iii) analysing the performance of \MLLMs~on monolingual, zero-shot cross-lingual and bilingual tasks (iv) understanding the universal language patterns (if any) learnt by \MLLMs~ and (v) augmenting the (often) limited capacity of \MLLMs~ to improve their performance on seen or even unseen languages. In this survey, we review the existing literature covering the above broad areas of research pertaining to \MLLMs. Based on our survey, we recommend some promising directions of future research.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.