Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multistage Stochastic Model Predictive Control for Urban Automated Driving (2107.00529v2)

Published 1 Jul 2021 in eess.SY and cs.SY

Abstract: Trajectory planning in urban automated driving is challenging because of the high uncertainty resulting from the unknown future motion of other traffic participants. Robust approaches guarantee safety, but tend to result in overly conservative motion planning. Hence, we propose to use Stochastic Model Predictive Control for vehicle control in urban driving, allowing to efficiently plan the vehicle trajectory, while maintaining the risk probability sufficiently low. For motion optimization, we propose to use a two-stage hierarchical structure that plans the trajectory and the maneuver separately. A high-level layer takes advantage of a long prediction horizon and of an abstract model to plan the optimal maneuver, and a lower level is in charge of executing the selected maneuver by properly planning the vehicle's trajectory. Numerical simulations are included, showing the potential of our proposal.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.