Papers
Topics
Authors
Recent
2000 character limit reached

Multistage Stochastic Model Predictive Control for Urban Automated Driving (2107.00529v2)

Published 1 Jul 2021 in eess.SY and cs.SY

Abstract: Trajectory planning in urban automated driving is challenging because of the high uncertainty resulting from the unknown future motion of other traffic participants. Robust approaches guarantee safety, but tend to result in overly conservative motion planning. Hence, we propose to use Stochastic Model Predictive Control for vehicle control in urban driving, allowing to efficiently plan the vehicle trajectory, while maintaining the risk probability sufficiently low. For motion optimization, we propose to use a two-stage hierarchical structure that plans the trajectory and the maneuver separately. A high-level layer takes advantage of a long prediction horizon and of an abstract model to plan the optimal maneuver, and a lower level is in charge of executing the selected maneuver by properly planning the vehicle's trajectory. Numerical simulations are included, showing the potential of our proposal.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.