Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Investigating the Reliability of Self-report Data in the Wild: The Quest for Ground Truth (2107.00389v2)

Published 1 Jul 2021 in cs.HC

Abstract: Inferring human mental state (e.g., emotion, depression, engagement) with sensing technology is one of the most valuable challenges in the affective computing area, which has a profound impact in all industries interacting with humans. The self-report survey is the most common way to quantify how people think, but prone to subjectivity and various responses bias. It is usually used as the ground truth for human mental state prediction. In recent years, many data-driven machine learning models are built based on self-report annotations as the target value. In this research, we investigate the reliability of self-report surveys in the wild by studying the confidence level of responses and survey completion time. We conduct a case study (i.e., student engagement inference) by recruiting 23 students in a high school setting over a period of 4 weeks. Our participants volunteered 488 self-reported responses and data from their wearable sensors. We also find the physiologically measured student engagement and perceived student engagement are not always consistent. The findings from this research have great potential to benefit future studies in predicting engagement, depression, stress, and other emotion-related states in the field of affective computing and sensing technologies.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.