Papers
Topics
Authors
Recent
2000 character limit reached

Morphological classification of compact and extended radio galaxies using convolutional neural networks and data augmentation techniques (2107.00385v1)

Published 1 Jul 2021 in astro-ph.GA, astro-ph.IM, cs.LG, and cs.NE

Abstract: Machine learning techniques have been increasingly used in astronomical applications and have proven to successfully classify objects in image data with high accuracy. The current work uses archival data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) to classify radio galaxies into four classes: Fanaroff-Riley Class I (FRI), Fanaroff-Riley Class II (FRII), Bent-Tailed (BENT), and Compact (COMPT). The model presented in this work is based on Convolutional Neural Networks (CNNs). The proposed architecture comprises three parallel blocks of convolutional layers combined and processed for final classification by two feed-forward layers. Our model classified selected classes of radio galaxy sources on an independent testing subset with an average of 96\% for precision, recall, and F1 score. The best selected augmentation techniques were rotations, horizontal or vertical flips, and increase of brightness. Shifts, zoom and decrease of brightness worsened the performance of the model. The current results show that model developed in this work is able to identify different morphological classes of radio galaxies with a high efficiency and performance

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.