Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Measuring Bias in Image Classification (2107.00360v1)

Published 1 Jul 2021 in cs.CV, cs.LG, and stat.ML

Abstract: Convolutional Neural Networks (CNN) have become de fact state-of-the-art for the main computer vision tasks. However, due to the complex underlying structure their decisions are hard to understand which limits their use in some context of the industrial world. A common and hard to detect challenge in ML tasks is data bias. In this work, we present a systematic approach to uncover data bias by means of attribution maps. For this purpose, first an artificial dataset with a known bias is created and used to train intentionally biased CNNs. The networks' decisions are then inspected using attribution maps. Finally, meaningful metrics are used to measure the attribution maps' representativeness with respect to the known bias. The proposed study shows that some attribution map techniques highlight the presence of bias in the data better than others and metrics can support the identification of bias.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.