Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Survey on Graph-Based Deep Learning for Computational Histopathology (2107.00272v2)

Published 1 Jul 2021 in cs.LG, cs.CV, and q-bio.TO

Abstract: With the remarkable success of representation learning for prediction problems, we have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches. However, learning over patch-wise features using convolutional neural networks limits the ability of the model to capture global contextual information and comprehensively model tissue composition. The phenotypical and topological distribution of constituent histological entities play a critical role in tissue diagnosis. As such, graph data representations and deep learning have attracted significant attention for encoding tissue representations, and capturing intra- and inter- entity level interactions. In this review, we provide a conceptual grounding for graph analytics in digital pathology, including entity-graph construction and graph architectures, and present their current success for tumor localization and classification, tumor invasion and staging, image retrieval, and survival prediction. We provide an overview of these methods in a systematic manner organized by the graph representation of the input image, scale, and organ on which they operate. We also outline the limitations of existing techniques, and suggest potential future research directions in this domain.

Citations (96)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.