Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distributed Multi-agent Navigation Based on Reciprocal Collision Avoidance and Locally Confined Multi-agent Path Finding (2107.00246v1)

Published 1 Jul 2021 in cs.MA

Abstract: Avoiding collisions is the core problem in multi-agent navigation. In decentralized settings, when agents have limited communication and sensory capabilities, collisions are typically avoided in a reactive fashion, relying on local observations/communications. Prominent collision avoidance techniques, e.g. ORCA, are computationally efficient and scale well to a large number of agents. However, in numerous scenarios, involving navigation through the tight passages or confined spaces, deadlocks are likely to occur due to the egoistic behaviour of the agents and as a result, the latter can not achieve their goals. To this end, we suggest an application of the locally confined multi-agent path finding (MAPF) solvers that coordinate sub-groups of the agents that appear to be in a deadlock (to detect the latter we suggest a simple, yet efficient ad-hoc routine). We present a way to build a grid-based MAPF instance, typically required by modern MAPF solvers. We evaluate two of them in our experiments, i.e. Push and Rotate and a bounded-suboptimal version of Conflict Based Search (ECBS), and show that their inclusion into the navigation pipeline significantly increases the success rate, from 15% to 99% in certain cases.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube