Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Multi-modal Graph Learning for Disease Prediction (2107.00206v1)

Published 1 Jul 2021 in cs.LG and cs.CV

Abstract: Benefiting from the powerful expressive capability of graphs, graph-based approaches have achieved impressive performance in various biomedical applications. Most existing methods tend to define the adjacency matrix among samples manually based on meta-features, and then obtain the node embeddings for downstream tasks by Graph Representation Learning (GRL). However, it is not easy for these approaches to generalize to unseen samples. Meanwhile, the complex correlation between modalities is also ignored. As a result, these factors inevitably yield the inadequacy of providing valid information about the patient's condition for a reliable diagnosis. In this paper, we propose an end-to-end Multimodal Graph Learning framework (MMGL) for disease prediction. To effectively exploit the rich information across multi-modality associated with diseases, amodal-attentional multi-modal fusion is proposed to integrate the features of each modality by leveraging the correlation and complementarity between the modalities. Furthermore, instead of defining the adjacency matrix manually as existing methods, the latent graph structure can be captured through a novel way of adaptive graph learning. It could be jointly optimized with the prediction model, thus revealing the intrinsic connections among samples. Unlike the previous transductive methods, our model is also applicable to the scenario of inductive learning for those unseen data. An extensive group of experiments on two disease prediction problems is then carefully designed and presented, demonstrating that MMGL obtains more favorable performances. In addition, we also visualize and analyze the learned graph structure to provide more reliable decision support for doctors in real medical applications and inspiration for disease research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.