Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Recognizing Facial Expressions in the Wild using Multi-Architectural Representations based Ensemble Learning with Distillation (2106.16126v3)

Published 30 Jun 2021 in cs.CV

Abstract: Facial expressions are the most common universal forms of body language. In the past few years, automatic facial expression recognition (FER) has been an active field of research. However, it is still a challenging task due to different uncertainties and complications. Nevertheless, efficiency and performance are yet essential aspects for building robust systems. We proposed two models, EmoXNet which is an ensemble learning technique for learning convoluted facial representations, and EmoXNetLite which is a distillation technique that is useful for transferring the knowledge from our ensemble model to an efficient deep neural network using label-smoothen soft labels for able to effectively detect expressions in real-time. Both of the techniques performed quite well, where the ensemble model (EmoXNet) helped to achieve 85.07% test accuracy on FER2013 with FER+ annotations and 86.25% test accuracy on RAF-DB. Moreover, the distilled model (EmoXNetLite) showed 82.07% test accuracy on FER2013 with FER+ annotations and 81.78% test accuracy on RAF-DB. Results show that our models seem to generalize well on new data and are learned to focus on relevant facial representations for expressions recognition.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.