Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CS decomposition and GSVD for tensors based on the T-product (2106.16073v1)

Published 30 Jun 2021 in math.NA and cs.NA

Abstract: This paper derives the CS decomposition for orthogonal tensors (T-CSD) and the generalized singular value decomposition for two tensors (T-GSVD) via the T-product. The structures of the two decompositions are analyzed in detail and are consistent with those for matrix cases. Then the corresponding algorithms are proposed respectively. Finally, T-GSVD can be used to give the explicit expression for the solution of tensor Tikhonov regularization. Numerical examples demonstrate the effectiveness of T-GSVD in solving image restoration problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.