Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latent Space Model for Higher-order Networks and Generalized Tensor Decomposition (2106.16042v1)

Published 30 Jun 2021 in cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We introduce a unified framework, formulated as general latent space models, to study complex higher-order network interactions among multiple entities. Our framework covers several popular models in recent network analysis literature, including mixture multi-layer latent space model and hypergraph latent space model. We formulate the relationship between the latent positions and the observed data via a generalized multilinear kernel as the link function. While our model enjoys decent generality, its maximum likelihood parameter estimation is also convenient via a generalized tensor decomposition procedure.We propose a novel algorithm using projected gradient descent on Grassmannians. We also develop original theoretical guarantees for our algorithm. First, we show its linear convergence under mild conditions. Second, we establish finite-sample statistical error rates of latent position estimation, determined by the signal strength, degrees of freedom and the smoothness of link function, for both general and specific latent space models. We demonstrate the effectiveness of our method on synthetic data. We also showcase the merit of our method on two real-world datasets that are conventionally described by different specific models in producing meaningful and interpretable parameter estimations and accurate link prediction. We demonstrate the effectiveness of our method on synthetic data. We also showcase the merit of our method on two real-world datasets that are conventionally described by different specific models in producing meaningful and interpretable parameter estimations and accurate link prediction.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.