Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning without Data: Physics-Informed Neural Networks for Fast Time-Domain Simulation (2106.15987v1)

Published 30 Jun 2021 in eess.SY and cs.SY

Abstract: In order to drastically reduce the heavy computational burden associated with time-domain simulations, this paper introduces a Physics-Informed Neural Network (PINN) to directly learn the solutions of power system dynamics. In contrast to the limitations of classical model order reduction approaches, commonly used to accelerate time-domain simulations, PINNs can universally approximate any continuous function with an arbitrary degree of accuracy. One of the novelties of this paper is that we avoid the need for any training data. We achieve this by incorporating the governing differential equations and an implicit Runge-Kutta (RK) integration scheme directly into the training process of the PINN; through this approach, PINNs can predict the trajectory of a dynamical power system at any discrete time step. The resulting Runge-Kutta-based physics-informed neural networks (RK-PINNs) can yield up to 100 times faster evaluations of the dynamics compared to standard time-domain simulations. We demonstrate the methodology on a single-machine infinite bus system governed by the swing equation. We show that RK-PINNs can accurately and quickly predict the solution trajectories.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.