Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cross-lingual alignments of ELMo contextual embeddings (2106.15986v2)

Published 30 Jun 2021 in cs.CL

Abstract: Building machine learning prediction models for a specific NLP task requires sufficient training data, which can be difficult to obtain for less-resourced languages. Cross-lingual embeddings map word embeddings from a less-resourced language to a resource-rich language so that a prediction model trained on data from the resource-rich language can also be used in the less-resourced language. To produce cross-lingual mappings of recent contextual embeddings, anchor points between the embedding spaces have to be words in the same context. We address this issue with a novel method for creating cross-lingual contextual alignment datasets. Based on that, we propose several cross-lingual mapping methods for ELMo embeddings. The proposed linear mapping methods use existing Vecmap and MUSE alignments on contextual ELMo embeddings. Novel nonlinear ELMoGAN mapping methods are based on GANs and do not assume isomorphic embedding spaces. We evaluate the proposed mapping methods on nine languages, using four downstream tasks: named entity recognition (NER), dependency parsing (DP), terminology alignment, and sentiment analysis. The ELMoGAN methods perform very well on the NER and terminology alignment tasks, with a lower cross-lingual loss for NER compared to the direct training on some languages. In DP and sentiment analysis, linear contextual alignment variants are more successful.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.