Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Whose Opinions Matter? Perspective-aware Models to Identify Opinions of Hate Speech Victims in Abusive Language Detection (2106.15896v1)

Published 30 Jun 2021 in cs.CL and cs.AI

Abstract: Social media platforms provide users the freedom of expression and a medium to exchange information and express diverse opinions. Unfortunately, this has also resulted in the growth of abusive content with the purpose of discriminating people and targeting the most vulnerable communities such as immigrants, LGBT, Muslims, Jews and women. Because abusive language is subjective in nature, there might be highly polarizing topics or events involved in the annotation of abusive contents such as hate speech (HS). Therefore, we need novel approaches to model conflicting perspectives and opinions coming from people with different personal and demographic backgrounds. In this paper, we present an in-depth study to model polarized opinions coming from different communities under the hypothesis that similar characteristics (ethnicity, social background, culture etc.) can influence the perspectives of annotators on a certain phenomenon. We believe that by relying on this information, we can divide the annotators into groups sharing similar perspectives. We can create separate gold standards, one for each group, to train state-of-the-art deep learning models. We can employ an ensemble approach to combine the perspective-aware classifiers from different groups to an inclusive model. We also propose a novel resource, a multi-perspective English language dataset annotated according to different sub-categories relevant for characterising online abuse: hate speech, aggressiveness, offensiveness and stereotype. By training state-of-the-art deep learning models on this novel resource, we show how our approach improves the prediction performance of a state-of-the-art supervised classifier.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.