Exploring Localization for Self-supervised Fine-grained Contrastive Learning (2106.15788v4)
Abstract: Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success in various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grained scenarios is not fully explored. We point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for fine-grained self-supervised pre-training. Based on our findings, we introduce cross-view saliency alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on foreground objects via a cross-view alignment loss. Extensive experiments on both small- and large-scale fine-grained classification benchmarks show that CVSA significantly improves the learned representation.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.