Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Near-Optimal Deterministic Single-Source Distance Sensitivity Oracles (2106.15731v1)

Published 29 Jun 2021 in cs.DS

Abstract: Given a graph with a source vertex $s$, the Single Source Replacement Paths (SSRP) problem is to compute, for every vertex $t$ and edge $e$, the length $d(s,t,e)$ of a shortest path from $s$ to $t$ that avoids $e$. A Single-Source Distance Sensitivity Oracle (Single-Source DSO) is a data structure that answers queries of the form $(t,e)$ by returning the distance $d(s,t,e)$. We show how to deterministically compress the output of the SSRP problem on $n$-vertex, $m$-edge graphs with integer edge weights in the range $[1,M]$ into a Single-Source DSO of size $O(M{1/2}n{3/2})$ with query time $\widetilde{O}(1)$. The space requirement is optimal (up to the word size) and our techniques can also handle vertex failures. Chechik and Cohen [SODA 2019] presented a combinatorial, randomized $\widetilde{O}(m\sqrt{n}+n2)$ time SSRP algorithm for undirected and unweighted graphs. Grandoni and Vassilevska Williams [FOCS 2012, TALG 2020] gave an algebraic, randomized $\widetilde{O}(Mn\omega)$ time SSRP algorithm for graphs with integer edge weights in the range $[1,M]$, where $\omega<2.373$ is the matrix multiplication exponent. We derandomize both algorithms for undirected graphs in the same asymptotic running time and apply our compression to obtain deterministic Single-Source DSOs. The $\widetilde{O}(m\sqrt{n}+n2)$ and $\widetilde{O}(Mn\omega)$ preprocessing times are polynomial improvements over previous $o(n2)$-space oracles. On sparse graphs with $m=O(n{5/4-\varepsilon}/M{7/4})$ edges, for any constant $\varepsilon > 0$, we reduce the preprocessing to randomized $\widetilde{O}(M{7/8}m{1/2}n{11/8})=O(n{2-\varepsilon/2})$ time. This is the first truly subquadratic time algorithm for building Single-Source DSOs on sparse graphs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.